If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2-16p-26=-8
We move all terms to the left:
4p^2-16p-26-(-8)=0
We add all the numbers together, and all the variables
4p^2-16p-18=0
a = 4; b = -16; c = -18;
Δ = b2-4ac
Δ = -162-4·4·(-18)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{34}}{2*4}=\frac{16-4\sqrt{34}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{34}}{2*4}=\frac{16+4\sqrt{34}}{8} $
| x+2(x+2=x+16 | | -4y-16=-48 | | 16x+11+6x-3=140 | | 4+3x+6=90 | | x+29.5=61.4 | | t-(-10)=50 | | k÷(-2)+(-7)=(-11) | | 6.5g+9=3.5g+21 | | 3(x-2)=-x+2 | | 3m=9=21 | | u/5-2=-27 | | 6x+34x-7=(5x+10) | | 20+3t=92 | | 7-(-4z)=11 | | 130(x)=17.5x−10 | | 15-3x=13+x | | -v/6=-33 | | C(x)=17.5(5)−10 | | 3y—2=10 | | 7(w-85)=98 | | 5x2+6x+7=x2+-4x | | 6x^2+48x-52=0 | | 3x+5=20-0.5x | | -4(5+3x)=-30-10x+3 | | -(x-26)=x-4(1-2x | | -4-9m=-49 | | 7=s+$1.75 | | 3x+5=20-0.5 | | 4.2r=25.2 | | 97-3xx=20 | | x(4-x^2)=(-x^2+4) | | 4n−12=12−4n |